9 research outputs found

    Two Beer(s) or Not Two Beer(s): The eNose as an Instrument to Pacify the World.

    Get PDF
    BACKGROUND Science prizes that are not meant to be very serious, stand-up evenings, science slams or publications with a scientific twist: science comedy comes in very different forms. But all variants have one thing in common: humour. It can be used to hide the seriousness of life or, in this case, everyday scientific life for a brief moment. Moreover, serious social or ethical questions are also met. The GPP, a group of German, Austrian and Swiss Pediatric Pulmonologists (GPP) is a scientific society with regular annual meetings. Unsystematic observations and preliminary data suggest that beer consumption increased by some of the participants during this event. Recently, electronic nose (eNose) devices have been developed as a technology for disease screening using exhaled-breath analysis. Here we addressed the issue, if the eNose can be used to differentiate between real beer and fake beer. METHODS In this single-centre experimental study, 12 different "real beer" types and one "fake beer" were analyzed with regard to their emittance of volatile organic compounds (VOCs) with the eNose as an electronic VOC-sensing technology. RESULTS Every single beer type can be identified by a characteristic VOC-smell print using the eNose. Distinct clusters exist for bottom- and top-fermented ales. Intriguingly, "Sylter Hopfen", which is marketed as a "champagne-beer" and tested as representative of a "fake beer", can be clearly differentiated from all other genuine beer types. CONCLUSION Our study provides the first objective data of beer flavor. In the long term perspective the eNose might help to overcome the agonizing controversy about beer flavors and, consequently, pacify the World. In the short run, however, our results give support to more targeted and reserved beer consumption during our annual meeting, especially since one specific beer shows a very similar pattern to indoor air. HINTERGRUND UND FRAGESTELLUNG Sogenannte Stand-up-Abende, Science Slams oder Publikationen wie in der «Christmas-Edition» des "British Medical Journals" haben eines gemeinsam: Humor. Humor kann dabei helfen, der Ernsthaftigkeit des Alltags - auch der des Wissenschaftlers - fĂŒr einen kurzen Moment zu entfliehen. Die wissenschaftliche Gesellschaft PĂ€diatrische Pneumologie (GPP e. V.) ist eine Gruppe deutscher, österreichischer und schweizer Kinderpneumolog:innen, die sich regelmĂ€ssig zu ihrer Jahrestagung treffen. Nicht-systematisch erhobene Daten und persönliche Beobachtungen deuten darauf hin, dass der Bierkonsum von einigen der Teilnehmer:innen wĂ€hrend dieser Veranstaltung signifikant ansteigt. Vor kurzem wurde mit der «eNose» eine sogenannte «elektronische Nase» entwickelt, die als Screening-Instrument zur Atemgasanalyse eingesetzt werden kann. Hier haben wir die Frage gestellt, ob die eNose verwendet werden kann, um unterschiedliche Biersorten zu unterscheiden und echte Biere von sogenannten «Fake-Bieren» zu diskriminieren. METHODEN In dieser monozentrischen, experimentellen Studie wurden 12 verschiedene "echte Biersorten" und ein "Fake-Bier" hinsichtlich ihrer Emission flĂŒchtiger organischer Verbindungen (VOCs) mit der eNose als elektronische VOC-Sensortechnologie analysiert. ERGEBNISSE Jede einzelne Biersorte lĂ€sst sich anhand eines charakteristischen, reproduzierbaren VOC-Profils mit der eNose identifizieren. Dabei clustern sogenannte unter- und obergĂ€rige Biere mit einem spezifischen Muster. "Sylter Hopfen", das als "Champagner-Bier" vermarktet und als «Fake-Bier» getestet wurde, unterscheidet sich in seinem VOC-Profil von allen anderen «echten» Biersorten. SCHLUSSFOLGERUNG Unsere Studie liefert die ersten objektiven Daten zu spezifischen VOC-Mustern von verschiedenen Biersorten. Langfristig könnte die eNose dabei helfen, die emotionale Kontroverse um Bieraromen zu ĂŒberwinden und damit die Welt zu befrieden. Kurzfristig stĂŒtzen unsere Ergebnisse die Empfehlung nach einem zurĂŒckhaltenden Bierkonsum wĂ€hrend unserer Jahrestagung, zumal spezifischen VOC-Mustern einiger Biere ein sehr Ă€hnliches Muster wie Raumluft zeigen

    TRACK-CF prospective cohort study: Understanding early cystic fibrosis lung disease.

    Get PDF
    BACKGROUND Lung disease as major cause for morbidity in patients with cystic fibrosis (CF) starts early in life. Its large phenotypic heterogeneity is partially explained by the genotype but other contributing factors are not well delineated. The close relationship between mucus, inflammation and infection, drives morpho-functional alterations already early in pediatric CF disease, The TRACK-CF cohort has been established to gain insight to disease onset and progression, assessed by lung function testing and imaging to capture morpho-functional changes and to associate these with risk and protective factors, which contribute to the variation of the CF lung disease progression. METHODS AND DESIGN TRACK-CF is a prospective, longitudinal, observational cohort study following patients with CF from newborn screening or clinical diagnosis throughout childhood. The study protocol includes monthly telephone interviews, quarterly visits with microbiological sampling and multiple-breath washout and as well as a yearly chest magnetic resonance imaging. A parallel biobank has been set up to enable the translation from the deeply phenotyped cohort to the validation of relevant biomarkers. The main goal is to determine influencing factors by the combined analysis of clinical information and biomaterials. Primary endpoints are the lung clearance index by multiple breath washout and semi-quantitative magnetic resonance imaging scores. The frequency of pulmonary exacerbations, infection with pro-inflammatory pathogens and anthropometric data are defined as secondary endpoints. DISCUSSION This extensive cohort includes children after diagnosis with comprehensive monitoring throughout childhood. The unique composition and the use of validated, sensitive methods with the attached biobank bears the potential to decisively advance the understanding of early CF lung disease. ETHICS AND TRIAL REGISTRATION The study protocol was approved by the Ethics Committees of the University of Heidelberg (approval S-211/2011) and each participating site and is registered at clinicaltrials.gov (NCT02270476)

    In vitro neutrophil migration is associated with inhaled corticosteroid treatment and serum cytokines in pediatric asthma.

    Get PDF
    Background: Different asthma phenotypes are driven by molecular endotypes. A Th1-high phenotype is linked to severe, therapy-refractory asthma, subclinical infections and neutrophil inflammation. Previously, we found neutrophil granulocytes (NGs) from asthmatics exhibit decreased chemotaxis towards leukotriene B4 (LTB4), a chemoattractant involved in inflammation response. We hypothesized that this pattern is driven by asthma in general and aggravated in a Th1-high phenotype. Methods: NGs from asthmatic nd healthy children were stimulated with 10 nM LTB4/100 nM N-formylmethionine-leucyl-phenylalanine and neutrophil migration was documented following our prior SiMA (simplified migration assay) workflow, capturing morphologic and dynamic parameters from single-cell tracking in the images. Demographic, clinical and serum cytokine data were determined in the ALLIANCE cohort. Results: A reduced chemotactic response towards LTB4 was confirmed in asthmatic donors regardless of inhaled corticosteroid (ICS) treatment. By contrast, only NGs from ICS-treated asthmatic children migrate similarly to controls with the exception of Th1-high donors, whose NGs presented a reduced and less directed migration towards the chemokines. ICS-treated and Th1-high asthmatic donors present an altered surface receptor profile, which partly correlates with migration. Conclusions: Neutrophil migration in vitro may be affected by ICS-therapy or a Th1-high phenotype. This may be explained by alteration of receptor expression and could be used as a tool to monitor asthma treatment

    TRACK-CF prospective cohort study: Understanding early cystic fibrosis lung disease

    Get PDF
    BackgroundLung disease as major cause for morbidity in patients with cystic fibrosis (CF) starts early in life. Its large phenotypic heterogeneity is partially explained by the genotype but other contributing factors are not well delineated. The close relationship between mucus, inflammation and infection, drives morpho-functional alterations already early in pediatric CF disease, The TRACK-CF cohort has been established to gain insight to disease onset and progression, assessed by lung function testing and imaging to capture morpho-functional changes and to associate these with risk and protective factors, which contribute to the variation of the CF lung disease progression.Methods and designTRACK-CF is a prospective, longitudinal, observational cohort study following patients with CF from newborn screening or clinical diagnosis throughout childhood. The study protocol includes monthly telephone interviews, quarterly visits with microbiological sampling and multiple-breath washout and as well as a yearly chest magnetic resonance imaging. A parallel biobank has been set up to enable the translation from the deeply phenotyped cohort to the validation of relevant biomarkers. The main goal is to determine influencing factors by the combined analysis of clinical information and biomaterials. Primary endpoints are the lung clearance index by multiple breath washout and semi-quantitative magnetic resonance imaging scores. The frequency of pulmonary exacerbations, infection with pro-inflammatory pathogens and anthropometric data are defined as secondary endpoints.DiscussionThis extensive cohort includes children after diagnosis with comprehensive monitoring throughout childhood. The unique composition and the use of validated, sensitive methods with the attached biobank bears the potential to decisively advance the understanding of early CF lung disease.Ethics and trial registrationThe study protocol was approved by the Ethics Committees of the University of Heidelberg (approval S-211/2011) and each participating site and is registered at clinicaltrials.gov (NCT02270476)

    Interleukin-1 beta is a potential mediator of airway nitric oxide deficiency in cystic fibrosis.

    No full text
    Airway nitric oxide (NO) deficiency is a hallmark of cystic fibrosis (CF), but the reasons for the reduced NO production in CF airways are unclear. Interleukin (IL)-1 pathway activation plays a role in early CF lung disease and is also involved in the regulation of NO synthase activity. Treatment of CF patients with the CFTR-targeting drug ivacaftor, among other beneficial effects, results in an increase in airway NO levels. In this longitudinal observational trial, we show that ivacaftor therapy leads to a significant reduction in sputum IL-1ÎČ concentration but not in other IL-1- or Th17-associated cytokines. IL-1ÎČ concentrations were closely linked to improvement in pulmonary function, measures of NO metabolism in sputum and exhaled NO. These data therefore suggest a potential interaction between transepithelial chloride conductance, IL-1ÎČ and airway NO production

    DataSheet1_In vitro neutrophil migration is associated with inhaled corticosteroid treatment and serum cytokines in pediatric asthma.docx

    No full text
    Background: Different asthma phenotypes are driven by molecular endotypes. A Th1-high phenotype is linked to severe, therapy-refractory asthma, subclinical infections and neutrophil inflammation. Previously, we found neutrophil granulocytes (NGs) from asthmatics exhibit decreased chemotaxis towards leukotriene B4 (LTB4), a chemoattractant involved in inflammation response. We hypothesized that this pattern is driven by asthma in general and aggravated in a Th1-high phenotype.Methods: NGs from asthmatic nd healthy children were stimulated with 10 nM LTB4/100 nM N-formylmethionine-leucyl-phenylalanine and neutrophil migration was documented following our prior SiMA (simplified migration assay) workflow, capturing morphologic and dynamic parameters from single-cell tracking in the images. Demographic, clinical and serum cytokine data were determined in the ALLIANCE cohort.Results: A reduced chemotactic response towards LTB4 was confirmed in asthmatic donors regardless of inhaled corticosteroid (ICS) treatment. By contrast, only NGs from ICS-treated asthmatic children migrate similarly to controls with the exception of Th1-high donors, whose NGs presented a reduced and less directed migration towards the chemokines. ICS-treated and Th1-high asthmatic donors present an altered surface receptor profile, which partly correlates with migration.Conclusions: Neutrophil migration in vitro may be affected by ICS-therapy or a Th1-high phenotype. This may be explained by alteration of receptor expression and could be used as a tool to monitor asthma treatment.</p
    corecore